|
|
- - - - - - - - - - - - - - ผู้ให้การสนับสนุน- - - - - - - - - - - - - -
|
|
|
กระทู้ #3540 [C] (จาก IP: 171.96.53.78)
ช่วยแนะการเขียนภาษาซี โดยใช้particle swarm optimization หน่อยคับ
มีเพื่อนๆคนไหนพอจะทราบบ้างไหมคับ ผมจะเอามาให้ในโปรเจคจบคับ อยากได้คนช่วยไกค์หรือขอคำแนะนำหน่อยคับ ผมเข้าใจหลักการของalogorithmน่ะแต่เอามาแปลงเป็นภาษาซีไม่ได้ ขอบคุณครับ
|
จากคุณ
:
Boy / cut_20@hotmail.com [2015-01-24 07:49:14]
|
|
ความคิดเห็น #29193 (จาก IP: 61.213.90.216)
เข้าใจแต่เขียนไม่ได้แปลว่าไม่เข้าใจ |
จากคุณ
:
Maddog [2015-01-24 11:57:53]
|
|
ความคิดเห็น #29276 (จาก IP: 49.48.228.89)
เขียนภาษาซี โดยparticle swarm optimization alogorithm
ที่มา : http://www.vcharkarn.com/vcafe/217009
/* Standard PSO version 2006
Motivation Quite often some authors say they compare their PSO versions to the "standard one" ... which is never the same! So the idea is to define a real standard at least for one year, validated by some researchers of the field, in particular James Kennedy and Maurice Clerc. This PSO version does not intend to be the best one on the market (in particular there is no adaptation of the swarm size nor of the coefficients) but simply very near of the original version (1995) with just a few improvements based on some recent works.
So referring to "standard PSO 2006" would mean exactly this version with the default values detailed below as,for example, referring to "standard PSO 2006 (w=0.8)" would mean almost this version but with a non standard first cognitive/confidence coefficient.
Parameters S := swarm size K := maximum number of particles _informed_ by a given one T := topology of the information links w := first cognitive/confidence coefficient c := second cognitive/confidence coefficient R := random distribution of c B := rule "to keep the particle in the box"
Equations For each particle and each dimension v(t+1) = w*v(t) + R(c)*(p(t)-x(t)) + R(c)*(g(t)-x(t)) x(t+1) = x(t) + v(t+1) where v(t) := velocity at time t x(t) := position at time t p(t) := best previous position of the particle g(t) := best previous position of the informants of the particle
Default values S = 10+2*sqrt(D) where D is the dimension of the search space K = 3 T := randomly modified after each step if there has been no improvement w = 1/(2*ln(2)) c = 0.5 + ln(2) R = U(0..c), i.e. uniform distribution on [0, c] B := set the position to the min. (max.) value and the velocity to zero
About information links topology A lot of works have been done about this topic. The main result is there is no "best" topology. Hence the random approach used here. Note that is does not mean that each particle is informed by K ones: the number of particles that informs a given one may be any value between 1 (for each particle informs itself) and S.
About initialisation Initial positions are chosen at random inside the search space (which is supposed to be a hyperparallelepid, and even often a hypercube), according to an uniform distribution. This is not the best way, but the one of the original PSO.
Each initial velocity is simply defined as the difference of two random positions. It is simple, and needs no additional parameter. However, again, it is not the best approach. The resulting distribution is not even uniform, as for any method that uses an uniform distribution independently for each component. The mathematically correct approach needs to use an uniform distribution inside a hypersphere. It is not that difficult, and indeed used in some PSO versions, but quite different from the original one.
Some results with the standard values You may want to recode this program in another language. Also you may want to modify it for your own purposes. Here are some results on classical test functions to help you to check your code. Dimension D=30 Acceptable error eps=0 Objective value f_min=0 Number of runs n_exec_max=50 Number of evaluations for each run eval_max=30000
Problem Mean best value Standard deviation Parabola/Sphere on [-100, 100]^D 0 0 Griewank on [-600, 600]^D 0.018 0.024 Rosenbrock/Banana on [-30, 30]^D 50.16 36.9 Rastrigin on [-5.12, 5.12]^D 48.35 14.43 Ackley on [-32, 32]^D 1.12 0.85
Last updates 2006-02-27 Fixed a bug about minimal best value over several runs 2006-02-16 Fixed a bug (S_max for P, V, X, instead of D_max), thanks to Manfred Stickel 2006-02-16 replaced k by i x by xs (in perf()), because of possible confusion with K and X 2006-02-13 added De Jong's f4 */ #include "stdio.h" #include "math.h" #include <stdlib.h> #include <time.h>
#define D_max 100 // Max number of dimensions of the search space #define S_max 100 // Max swarm size #define R_max 200 // Max number of runs
// Structures struct velocity { int size; double v[D_max]; };
struct position { int size; double x[D_max]; double f; };
// Sub-programs double alea( double a, double b ); int alea_integer( int a, int b ); double perf( int s, int function ); // Fitness evaluation
// Global variables int best; // Best of the best position (rank in the swarm) int D; // Search space dimension double E; // exp(1). Useful for some test functions double f_min; // Objective(s) to reach int LINKS[S_max] [S_max]; // Information links int nb_eval; // Total number of evaluations double pi; // Useful for some test functions struct position P[S_max]; // Best positions found by each particle int S; // Swarm size struct velocity V[S_max]; // Velocities struct position X[S_max]; // Positions double xmin[D_max], xmax[D_max]; // Intervals defining the search space
// File(s) FILE * f_run;
// ================================================= int main() { double c; // Second onfidence coefficient int d; // Current dimension double eps; // Admissible error double eps_mean; // Average error double error; // Error for a given position double error_prev; // Error after previous iteration int eval_max; // Max number of evaluations double eval_mean; // Mean number of evaluations int function; // Code of the objective function int g; // Rank of the best informant int init_links; // Flag to (re)init or not the information links int i; int K; // Max number of particles informed by a given one int m; double mean_best[R_max]; double min; // Best result through several runs int n_exec, n_exec_max; // Nbs of executions int n_failure; // Number of failures int s; // Rank of the current particle double t1, t2; double variance; double w; // First confidence coefficient
f_run = fopen( "f_run.txt", "w" ); E = exp( 1 ); pi = acos( -1 );
//----------------------------------------------- PROBLEM function = 13; //Function code /* 0 Parabola (Sphere) 1 De Jong' f4 2 Griewank 3 Rosenbrock (Banana) 4 Step 6 Foxholes 2D 7 Polynomial fitting problem 9D 8 Alpine 9 Rastrigin 10 Ackley 13 Tripod 2D 17 KrishnaKumar 18 Eason 2D */
D = 2; // Search space dimension
// D-cube data for ( d = 0; d < D; d++ ) { xmin[d] = -100; xmax[d] = 100; }
eps = 0.9; // Acceptable error f_min = 0; // Objective value n_exec_max = 100; // Numbers of runs eval_max = 10000; // Max number of evaluations for each run
if(n_exec_max>R_max) n_exec_max=R_max; //----------------------------------------------------- PARAMETERS S = 10+( int )(2*sqrt(D)); if (S>S_max) S=S_max; K = 3; w = 1 / ( 2 * log( 2 ) ); c = 0.5 + log( 2 );
printf("\n Swarm size %i", S); printf("\n coefficients %f %f \n",w,c);
//----------------------------------------------------- INITIALISATION t1 = clock(); // Init time // Initialisation of information variables n_exec = 0; eval_mean = 0; eps_mean = 0; n_failure = 0;
init: n_exec = n_exec + 1; for ( s = 0; s < S; s++ ) // Positions and velocities { X[s].size = D; V[s].size = D;
for ( d = 0; d < D; d++ ) { X[s].x[d] = alea( xmin[d], xmax[d] ); V[s].v[d] = (alea( xmin[d], xmax[d] ) - X[s].x[d])/2; // Non uniform // V[s].v[d] = ( xmin[d]-xmax[d] )*(0.5-alea(0,1)); //Uniform. 2006-02-24 } }
// First evaluations nb_eval = 0; for ( s = 0; s < S; s++ ) { X[s].f = fabs( perf( s, function ) - f_min ); P[s] = X[s]; // Best position = current one }
// Find the best best = 0; for ( s = 1; s < S; s++ ) if ( P[s].f < P[best].f ) best = s;
error = P[best].f ; // Current min error if(n_exec==1) min=error; error_prev=error; // Previous min error
init_links = 1; // So that information links will be initialized
//---------------------------------------------- ITERATIONS loop: if ( init_links == 1 ) { // Who informs who, at random for ( s = 0; s < S; s++ ) { for ( m = 0; m < S; m++ ) LINKS[m] [s] = 0; // Init to "no link" LINKS[s] [s] = 1; // Each particle informs itself }
for ( m = 0; m < S; m++ ) // Other links { for ( i = 0; i < K; i++ ) { s = alea_integer( 0, S - 1 ); LINKS[m] [s] = 1; } } }
// The swarm MOVES for ( s = 0; s < S; s++ ) // For each particle ... { // .. find the best informant g=s; for ( m = 0; m < S; m++ ) { if ( LINKS[m] [s] == 1 && P[m].f<P[g].f ) g = m; }
// ... compute the new velocity, and move for ( d = 0; d < D; d++ ) { V[s].v[d] = w * V[s].v[d] + alea( 0, c ) * ( P[s].x[d] - X[s].x[d] ); V[s].v[d] = V[s].v[d] + alea( 0, c ) * ( P[g].x[d] - X[s].x[d] ); X[s].x[d] = X[s].x[d] + V[s].v[d]; }
// ... interval confinement (keep in the box) for ( d = 0; d < D; d++ ) { if ( X[s].x[d] < xmin[d] ) { X[s].x[d] = xmin[d]; V[s].v[d] = 0; } if ( X[s].x[d] > xmax[d] ) { X[s].x[d] = xmax[d]; V[s].v[d] = 0; } }
// ... evaluate the new position X[s].f = fabs( perf( s, function ) - f_min );
// ... update the best previous position if ( X[s].f<P[s].f ) { P[s] = X[s]; // ... update the best of the bests if ( P[s].f<P[best].f ) best = s; } }
// Check if finished // If no improvement, information links will be reinitialized error=P[best].f; if ( error >= error_prev ) init_links = 1; else init_links = 0; error_prev = error;
if ( error > eps && nb_eval < eval_max ) goto loop; if ( error > eps ) n_failure = n_failure + 1;
// Result display printf( "\nExec %i Eval %i. Error %f ", n_exec, nb_eval, error ); printf( "\n Position :\n" ); for ( d = 0; d < D; d++ ) printf( " %f", P[best].x[d] );
// Save result fprintf( f_run, "\n%i %i %f ", n_exec, nb_eval,error ); fprintf( f_run, " Position: " ); for ( d = 0; d < D; d++ ) fprintf( f_run, " %f", P[best].x[d] );
// Compute some statistical information if ( error < min ) min = error; eval_mean = eval_mean + nb_eval; eps_mean = eps_mean + error; mean_best[n_exec - 1] = error;
if ( n_exec < n_exec_max ) goto init;
// END. Display some statistical information t2 = clock(); printf( "\n\n Total clocks %.0f", t2 - t1 ); eval_mean = eval_mean / ( double )n_exec; eps_mean = eps_mean / ( double )n_exec; printf( "\n\n Eval. (mean)= %f", eval_mean ); printf( "\n Error (mean) = %f", eps_mean );
// Variance variance = 0; for ( d = 0; d < n_exec_max; d++ ) variance = variance + ( mean_best[d] - eps_mean ) * ( mean_best[d] - eps_mean ); variance = sqrt( variance / n_exec_max ); printf( "\n Std. dev. %f", variance );
// Success rate and minimum value printf( "\n Success rate = %.2f%%", 100 * ( 1 - n_failure / ( double )n_exec ) ); if ( n_exec > 1 ) printf( "\n Best min value = %f", min );
end:; return 0; }
//=========================================================== double alea( double a, double b ) { // random number (uniform distribution) in [a b] double r; r=(double)rand(); r=r/RAND_MAX; return a + r * ( b - a ); } //=========================================================== int alea_integer( int a, int b ) { // Integer random number in [a b] int ir; double r; r = alea( 0, 1 ); ir = ( int )( a + r * ( b + 1 - a ) ); if ( ir > b ) ir = b; return ir; }
//=========================================================== double perf( int s, int function ) { // Evaluate the fitness value for the particle of rank s double c; int d, d1; int i, j, k; double f, f1, p, xd, x1, x2, x3, x4; double min; double sum1, sum2; double t0, tt, t1; struct position xs;
// For Foxholes problem static int a[2] [25] = { { -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32 }, { -32, -32, -32, -32, -32, -16, -16, -16, -16, -16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32 } }; // For polynomial fitting problem int const M = 60; double py, y = -1, dx = ( double )M;
nb_eval = nb_eval + 1; xs = X[s];
switch ( function ) { case 0: // Parabola (Sphere) f = 0; p = 0; // Shift for ( d = 0; d < D; d++ ) { xd = xs.x[d] - p; f = f + xd * xd; } break;
case 1: // De Jong's f4 f = 0; p = 0; // Shift for ( d = 0; d < D; d++ ) { xd = xs.x[d] - p; f = f + (d+1)*xd*xd*xd*xd; } break;
case 2: // Griewank f = 0; p = 1; for ( d = 0; d < D; d++ ) { xd = xs.x[d]; f = f + xd * xd; p = p * cos( xd / sqrt( d + 1 ) ); } f = f / 4000 - p + 1; break;
case 3: // Rosenbrock f = 0; t0 = xs.x[0]; for ( d = 1; d < D; d++ ) { t1 = xs.x[d]; tt = 1 - t0; f += tt * tt; tt = t1 - t0 * t0; f += 100 * tt * tt; t0 = t1; } break;
case 4: // Step f = 0; for ( d = 0; d < D; d++ ) f = f + ( int )xs.x[d]; break;
case 6: //Foxholes 2D f = 0; for ( j = 0; j < 25; j++ ) { sum1 = 0; for ( d = 0; d < 2; d++ ) { sum1 = sum1 + pow( xs.x[d] - a[d] [j], 6 ); } f = f + 1 / ( j + 1 + sum1 ); } f = 1 / ( 0.002 + f ); break;
case 7: // Polynomial fitting problem // on [-100 100]^9 f = 0; dx = 2 / dx; for ( i = 0; i <= M; i++ ) { py = xs.x[0]; for ( d = 1; d < D; d++ ) { py = y * py + xs.x[d]; } if ( py < -1 || py > 1 ) f += ( 1 - py ) * ( 1 - py ); y += dx; } py = xs.x[0]; for ( d = 1; d < D; d++ ) py = 1.2 * py + xs.x[d]; py = py - 72.661; if ( py < 0 ) f += py * py; py = xs.x[0]; for ( d = 1; d < D; d++ ) py = -1.2 * py + xs.x[d]; py = py - 72.661; if ( py < 0 ) f += py * py; break;
case 8: // Clerc's f1, Alpine function, min 0 f = 0; for ( d = 0; d < D; d++ ) { xd = xs.x[d]; f += fabs( xd * sin( xd ) + 0.1 * xd ); } break;
case 9: // Rastrigin. Minimum value 0. Solution (0,0 ...0) k = 10; f = 0; for ( d = 0; d < D; d++ ) { xd = xs.x[d]; f += xd * xd - k * cos( 2 * pi * xd ); } f += D * k; break;
case 10: // Ackley sum1 = 0; sum2 = 0; for ( d = 0; d < D; d++ ) { xd = xs.x[d]; sum1 += xd * xd; sum2 += cos( 2 * pi * xd ); } y = D; f = ( -20 * exp( -0.2 * sqrt( sum1 / y ) ) - exp( sum2 / y ) + 20 + E ); break;
case 13: // 2D Tripod function (Louis Gacogne) // Search [-100, 100]^2. min 0 on (0 -50) x1 = xs.x[0]; x2 = xs.x[1]; if ( x2 < 0 ) { f = fabs( x1 ) + fabs( x2 + 50 ); } else { if ( x1 < 0 ) f = 1 + fabs( x1 + 50 ) + fabs( x2 - 50 ); else f = 2 + fabs( x1 - 50 ) + fabs( x2 - 50 ); } break;
case 17: // KrishnaKumar f = 0; for ( d = 0; d < D - 1; d++ ) { f = f + sin( xs.x[d] + xs.x[d + 1] ) + sin( 2 * xs.x[d] * xs.x[d + 1] / 3 ); } break;
case 18: // Eason 2D (usually on [-100,100] // Minimum -1 on (pi,pi) x1 = xs.x[0]; x2 = xs.x[1]; f = -cos( x1 ) * cos( x2 ) / exp( ( x1 - pi ) * ( x1 - pi ) + ( x2 - pi ) * ( x2 - pi ) ); break; } return f; } |
จากคุณ
:
นกแสก / kitsumato@yahoo.co.th [2015-09-07 09:21:16]
|
|
|
- - - - - - - - - - - - - - ผู้ให้การสนับสนุน- - - - - - - - - - - - - -
|
|
|
|
|